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This class of signals are generated by a periodic oscillation of a signal that has
large harmonic content  (opposite of a pure sine wave).   Typical generators:

A short charge bunch in a storage ring
Signal detected by a photodiode of a mode-locked laser
A radar signal

These signals have a rich harmonic structure.

AM and PM sideband strengths scale differently with harmonic number.

The time jitter of the carrier depends on the amount of phase modulation of
the carrier and is reflected in the strength of the sidebands.

Beam-Type Signals



  

Signals and Their Fourier Transform

The Fourier transform of a signal in time-space
is the signal in frequency-space. 

V  f  = ∫
−∞

∞

V t  e− j 2 f t dt

V t  = ∫
−∞

∞

V  f  e j 2 f t dt

Spectrum of a sine wave is a single
frequency.
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Spectrum of a Pulse Train with Amplitude Modulation

A pulse train with repetition frequency f
0
 has a period

The current is then 

T 0 =
1
f 0

I t  = e∑
−∞

∞

 t − nT 0

= e0∑
n

e j n0 t

d(t) is the Dirac delta function with the properties:

The delta function is used to construct an infinitely
sharp waveform with an infinity of harmonics.

d(t - n T
0
) means that every time t that is equal to a 

multiple n of the period T
0
 that a current pulse appears.

If the signal now has an amplitude modulation m < 1:

The sidebands of each harmonic have the same 
amplitude in relation to its carrier.

I m t  = [1  m cos m t ] I t 

 x  = 0 , x ≠ 0 ,
 x  = ∞ , x = 0 ,

∫
−∞

∞

 x dx = 1 , −∞ x∞

Dirac delta function



  

Spectrum of a Pulse Train with Phase Modulation

The frequency deviation is proportional to harmonic number.   However, the
modulation index is the frequency deviation divided by the modulating frequency.

Thus, the modulation index of each harmonic is proportional to the harmonic number.

The sideband amplitudes 
grow as the Bessel function 
of the modulation index m.
The sidebands retain the same
separation from each carrier,
but change amplitude.

V t  ~ J 0m cosc t 
 J 1 m  [sin c  m t  sin c − m t ]
 J 2m [cosc  2m t  cos c − 2m t ]
 J 3 m [sin c  3m t  sin c − 3m t ]
 J 4 m  [cos c  4m t  cos c − 4m t ] ⋯

Measuring the harmonics 
of the pulsed waveform, 
the amplitude and phase 
modulation amplitudes can 
be separately determined.

I t  = e∑
n

 t − nT 0  x coss t 



  

Noise and Time Jitter

Accelerator-based experiments are now using shorter pulses with more accurate
timing requirements.  The time jitter of a periodic pulse train (laser, X-ray, electron
beam) can be found by measuring the phase noise spectrum of the pulse train.

The noise power spectrum S(u) (sometimes called L(u)) is comprised of several
different types of random processes.

A 1/f4 Random Walk FM Mechanical perturbations, temperature
B 1/f3 Flicker FM Mechanical parts in oscillator
C 1/f2 White FM Oscillator coupled to high-Q cavity
D 1/f Flicker PM Noise in oscillator electronics
E 1 White PM Broadband amplifier noise

Not all these may be present at
once, and narrow peaks, such
as power line harmonics, are
common.



  

Typical Mode-Locked Laser Harmonic Spectrum

The output of a photodiode illuminated by a mode-locked laser at repetition frequency u
is displayed on a spectrum analyzer.   The first three harmonics have equal amplitude
(the fall-off at higher harmonic numbers is mostly due to the frequency response of
the photodiode than the actual harmonic intensity from the laser).

Note that the width of each spectral line grows with harmonic number.   This represents
the increasing phase modulation sideband energy.

The baseline between the peaks is the noise floor of the analyzer, any amplifier that
follows the photodiode, and (very much lower) shot noise in the photodiode itself.

Lasers tend to have less high-
frequency noise than crystals.



  

Time Jitter of a Periodic Oscillator

The rms time jitter s
t 
of a harmonic line u  = m u

0
 with sideband power spectrum S(u) is

 t =
1
 2∫

 f

S  d

Where the integral is over the interval Df  =  f
upper

 -  f
lower  

.  

S(u) is a pure number and is the ratio of the sideband power in a 1 Hz band normalized
to the power contained in the carrier of frequency u of the harmonic m being measured.

Note that for pure phase noise, the
time jitter s

t
 is independent of the harmonic

m selected, where u = m u
0
,   u

0
 is

the fundamental frequency of the
oscillator.  The factor of 2 in the square
root takes into account that both sidebands
contribute to the jitter.

Here is an actual phase noise power
spectrum, with the jitter calculated by
the analyzer.



  

Johnson Noise, Shot Noise

Johnson noise is the noise voltage generated across a resistor R at temperature T.

k
b
 = 1.38 x 10-23 joule/kelvin is Boltzmann's constant, Df is the frequency interval.

The noise power is then

(Why is this not free energy?)

Shot noise is generated by random fluctuations of the electrons comprising the 
current itself, for example,  through a photodiode.

If this current is through a resistor R, the noise power is

Show that for a photodiode demodulating a fully modulated optical signal with
average d.c. diode current I

d
, that the shot noise power spectrum is

v johnson
2

= 4 kbT R  f

P =
v2

R
, P johnson = 4 k bT  f

i shot
2 = 2 e I  f

Pshot = 2e I R f

S shot  =
Shot Power
Carrier Power

=
4e f
I d

Show that maximum power transfer occurs when the load impedance equals
the generator impedance.


